
Always ship trunk
Managing change in complex websites

Paul Hammond

Revision Control

version 1
version 2
version 3
version 4

If youʼre not using any revision control
system leave now and start using one

But...

Coordinating many people
working on many things

at the same time is still hard

“Just use branching”

...which means merging

“Branching causes problems in Subversion
because Subversion doesnʼt store enough
information to make merging work. In
Mercurial, merging is painless and easy, and so
branching is commonplace and harmless.”

—Joel Spolsky, http://hginit.com/00.html

http://hginit.com/00.html
http://hginit.com/00.html

“Git will allow you to have multiple local
branches ... the creation, merging and deletion
of those lines of development take seconds ...
Git makes this process incredibly easy and it
changes the way most developers work when
they learn it”

— Scott Chacon, http://whygitisbetterthanx.com/

Distributed branching & merging is awesome

But...

“What the !#*$ is going on?”
“What the !#*$ just went wrong?”

“What the !#*$ is running on www34?”

All existing revision control systems were built by
people who build installed software

1. Installed software
2. Open source installed software
3. Web applications & Software as a Service

Three kinds of software:

Web apps are not like installed apps

“In the online world, a software product drives
a service to which users have access. There is,
most often, a single copy of the actual software
product in use. There is one consumer of the
software: you. The users are consumers of the
service built atop the software.”

– Theo Schlossnage
http://omniti.com/seeds/online-application-

deployment-reducing-risk

http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk

Does your team admin every computer your
software is installed on?

Each new release happens exactly once

Once an upgrade has happened, the old code will
never be run again

1.0 1.1 1.2

1.0.1

1.1.1

1.0.2

r2301 r2302 r2306

Well, kind of...

Upgrades are not deployed to all servers
simultaneously

Staging/QA environments

Beta environments

Upgrades are not deployed to all users
simultaneously

A/B testing

Public betas

Configuration management
Application code

Installed library dependencies
Web service dependencies

Coordinating many people
working on many things

and running them all at the same time
is hard

But nobody knows you just deployed
(unless you tell them)

Idea one: separate feature launches from
infrastructure launches

You can deploy the code for a feature
long before you launch it

and nobody will know

You can completely rewrite your infrastructure and
keep the UI the same
and nobody will know

Idea two: run multiple versions of your code at
once

You can repeatedly switch between two backend
systems and keep the UI the same

and nobody will know

You can deploy a non-user facing change to only a
small percentage of servers

and nobody will know

You can offer different user interfaces
to different users

and nobody will know

Need a revision control system that allows us to
manage multiple parallel versions of the code and

switch between them at runtime

Branches?

Branches donʼt help you switch between versions
at runtime

Branches donʼt help you manage
dependency changes that need to happen

on all versions at once

Need a revision control system that allows us to
manage multiple parallel versions of the code

and switch between them at runtime

Need a revision control system that allows us to
manage multiple parallel versions of the code

and switch between them at runtime

Need a revision control system that allows us to
manage multiple parallel versions of the code

and switch between them at runtime

Manage the different versions
within your application

Branch in code

if ($cfg['use_snowflake_ticket_server']) {

 # new hotness
 $ticket = snowflake_ticket();

} else {

 # old and boring
 $ticket = db_generate_ticket();

}

hardcoded to not run
$cfg['use_snowflake_ticket_server'] = false;

only in certain environments
if ($cfg['environment'] == 'dev') {
 $cfg['use_snowflake_ticket_server'] = true;
} else {
 $cfg['use_snowflake_ticket_server'] = false;
}

only for a percentage of users
if (($user->id % 100) < 3) {
 $cfg['use_snowflake_ticket_server'] = true;
} else {
 $cfg['use_snowflake_ticket_server'] = false;
}

only for a percentage of requests
$rand = rand(0,99);
if ($rand < 3) {
 $cfg['use_snowflake_ticket_server'] = true;
} else {
 $cfg['use_snowflake_ticket_server'] = false;
}

only for a percentage of requests
if ($cfg['environment'] == 'dev') {
 $cfg['use_snowflake_percentage'] = 100;
} else {
 $cfg['use_snowflake_percentage'] = 2;
}

$rand = rand(0,99);
if ($rand < $cfg['use_snowflake_percentage']) {
 $cfg['use_snowflake_ticket_server'] = true;
} else {
 $cfg['use_snowflake_ticket_server'] = false;
}

done testing, let’s launch
$cfg['use_snowflake_ticket_server'] = true;

uh oh...
$cfg['use_snowflake_ticket_server'] = false;

ok, it works again
$cfg['use_snowflake_ticket_server'] = true;

Feature testing on production servers

team testing
$team = array(41,287,5806,5930);
if (in_array($user->id, $team)) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

private staff alpha testing
if ($user->is_admin()) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

opt-in private staff alpha testing
$has_cookie = isset($_COOKIE['new_context']);
if ($user->is_admin() && $has_cookie) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

http://code.flickr.com/blog/2009/12/02/flipping-out/

http://code.flickr.com/blog/2009/12/02/flipping-out/
http://code.flickr.com/blog/2009/12/02/flipping-out/

opt-in public betas
if ($user->has_pref('new_context')) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

opt-in public betas via groups
if ($user->in_group('new_context')) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

user tagging (ala dopplr)
if ($user->has_tag('context_widget')) {
 $cfg['use_new_context_widget'] = true;
} else {
 $cfg['use_new_context_widget'] = false;
}

Flexibility

dark launches can be ramped up
if ($cfg['front_page_dark_launch']) {
 # notice we're not keeping the data
 get_some_really_complex_data()
}

1. Development on user facing features
2. Development on infrastructure
3. Kill-switches

Three types of feature flags:

killswitch
if ($cfg['disable_login']) {
 error('Sorry, login is unavailable');
 exit;
}

Usually need multiple flags at once
during development and testing

for development
$cfg['disable_search_tests_all'] = false;
$cfg['disable_search_ui_beta_test'] = false;
$cfg['disable_search_darklaunch'] = false;

for post launch
$cfg['disable_search'] = false;

Complexity

Separate operational controls
from development flags

Be disciplined about removing
 unused feature flags

Always deploy trunk to every
server on every deploy

and manage versions through config

integrate with configuration management
if (in_array('beta', $node['roles']) {
 # …
} else {
 # …
}

or generate the application config file
from configuration management system…

“I canʼt tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes theyʼre even kind of proud of this new, single-trunk
invention of theirs. As if itʼs a virtue to work around the fact that your
version control tool is not doing what itʼs meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

Distributed branching & merging is awesome

Use branches for early development

Branches merged into trunk

Use flags for rollout of almost-finished code

“I canʼt tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes theyʼre even kind of proud of this new, single-trunk
invention of theirs. As if itʼs a virtue to work around the fact that your
version control tool is not doing what itʼs meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

“I canʼt tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes theyʼre even kind of proud of this new, single-trunk
invention of theirs. As if itʼs a virtue to work around the fact that your
version control tool is not doing what itʼs meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

All existing revision control systems were built by
people who build installed software

Web apps are not like installed apps

What would a revision control system built for
supporting deployed web applications be like?

Thank you!

paul@paulhammond.org
http://www.paulhammond.org/2010/trunk

mailto:paul@paulhammond.org
mailto:paul@paulhammond.org
http://phmmnd.me/tru
http://phmmnd.me/tru

