Always ship trunk

Managing change in complex websites

Paul Hammond

ph@pacu:code$ 1ls -1
_index.html

_index.html.old
_index.html.old.keep

backups

index.html

index.html_old
index.html_older
index.html_paul _DO_NOT_DELETE
index_2009_01_10.html
index_2009_01_11.html
index_2009_01_12.html
index_2009_01_13.html
index_2009_01_13.html_broken
index_2009_01_14.html_broken
index_2009_01_29.html_broken
index_2009_01_30.html_broken
index_2009_02_10.html_broken
index_good.html
index_old.html

ph@pacu:code$ l

Terminal — bash — 80x25

Revision Control

version 1
version 2
version 3
version 4

Terminal — bash — 80x25
ph@pacu:code$ svn log

r2 | ph | 2010-06-22 20:23:27 -0700 (Tue, 22 Jun 2010) | 1 line
basic user model

r1 | ph | 2010-06-22 20:18:27 -0700 (Tue, 22 Jun 2010) | 2 lines

initial import

ph@pacu:code$ l

If you’re not using any revision control
system leave now and start using one

But...

Coordinating many people
working on many things
at the same time is still hard

“Just use branching”

...which means merging

“Branching causes problems in Subversion
because Subversion doesn’t store enough
information to make merging work. In
Mercurial, merging is painless and easy, and so

branching is commonplace and harmless.”
—Joel Spolsky, http://hginit.com/00.html

http://hginit.com/00.html
http://hginit.com/00.html

“Git will allow you to have multiple local
branches ... the creation, merging and deletion
of those lines of development take seconds ...
Git makes this process incredibly easy and it
changes the way most developers work when

they learn it”
— Scott Chacon, http://whygitisbetterthanx.com/

minimal-gallery

resque_web_restart

api_styles

R email_reuse

remove-all-designers

use-newest-screenshot

api.docs

Distributed branching & merging is awesome

But...

“What the #*3 is going on?”
“What the #*$ just went wrong?”
“What the #*$ is running on www347?”

All existing revision control systems were built by
people who build installed software

Three kinds of software:

1. Installed software
2. Open source installed software
3. Web applications & Software as a Service

Web apps are not like installed apps

“In the online world, a software product drives
a service to which users have access. There Is,
most often, a single copy of the actual software
product in use. There is one consumer of the
software: you. The users are consumers of the

service built atop the software.”
— Theo Schlossnage

http://omniti.com/seeds/online-application-
deployment-reducing-risk

http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk
http://omniti.com/seeds/online-application-deployment-reducing-risk

Does your team admin every computer your
software is installed on?

Each new release happens exactly once

Once an upgrade has happened, the old code will
never be run again

1.0.1 >1.0.2

e

>1.0 > 1.1 W >

>12301 >12302 >12306

Well, kind of...

Upgrades are not deployed to all servers
simultaneously

Staging/QA environments

Beta environments

Upgrades are not deployed to all users
simultaneously

A/B testing

Public betas

Configuration management
Application code

Installed library dependencies
Web service dependencies

Coordinating many people
working on many things
and running them all at the same time
IS hard

But nobody knows you just deployed
(unless you tell them)

|dea one: separate feature launches from
infrastructure launches

You can deploy the code for a feature
long before you launch it
and nobody will know

You can completely rewrite your infrastructure and
keep the Ul the same
and nobody will know

ldea two: run multiple versions of your code at
once

You can repeatedly switch between two backend
systems and keep the Ul the same
and nobody will know

You can deploy a non-user facing change to only a
small percentage of servers
and nobody will know

You can offer different user interfaces
to different users
and nobody will know

Need a revision control system that allows us to
manage multiple parallel versions of the code and
switch between them at runtime

Branches?

Branches don’t help you switch between versions
at runtime

Branches don’t help you manage
dependency changes that need to happen
on all versions at once

Need a revision control system that allows us to
manage multiple parallel versions of the code
and switch between them at runtime

Need a revision control system that allows us to
manage multiple parallel versions of the code
and switch between them at runtime

Need a system that allows us to
manage multiple parallel versions of the code
and switch between them at runtime

Manage the different versions
within your application

Branch in code

1f ($cfgl 'use_snowflake_ticket_server']) {

new hotness
$ticket = snowflake_ticket();

} else {

old and boring
$ticket = db_generate_ticket();

hardcoded to not run
$cfgl 'use_snowflake_ticket_server'] = false;

only 1n certain environments
1f ($cfgl’'environment’] == 'dev’) {
$cfgl "use_snowflake_ticket_server']

} else {
$cfgl 'use_snowflake_ticket_server'] = false;

true;

¥

only for a percentage of users
1f (($user->id % 100) < 3) {
$cfgl "use_snowflake_ticket_server']

} else {
$cfgl 'use_snowflake_ticket_server'] = false;

true;

¥

only for a percentage of requests
$rand = rand(0,99);
if ($rand < 3) {

$cfgl 'use_snowflake_ticket_server']
} else {

$cfgl 'use_snowflake_ticket_server'] = false;

true;

¥

only for a percentage of requests
1f ($cfgl’'environment’] == 'dev’) {

$cfgl 'use_snowflake_percentage’] = 100;
} else {

$cfgl 'use_snowflake_percentage’]

[
N

¥

$rand = rand(0,99);

1f ($rand < $cfgl'use_snowflake_percentage’]) {
$cfgl 'use_snowflake_ticket_server'] = true;

} else {
$cfgl 'use_snowflake_ticket_server'] = false;

¥

done testing, let’s launch
$cfgl 'use_snowflake_ticket_server'] = true;

uh oh...
$cfgl 'use_snowflake_ticket_server'] = false;

ok, 1t works again
$cfgl 'use_snowflake_ticket_server'] = true;

Feature testing on production servers

team testing
$team = array(41,287,5806,5930);
if (in_array($user->id, $team)) {
$cfgl 'use_new_context_widget'] = true;
} else {
$cfgl'use_new_context_widget'] = false;

¥

private staff alpha testing
1T ($user->is_admin()) {

$cfgl 'use_new_context_widget']
} else {

$cfgl 'use_new_context_widget'] = false;

true;

¥

opt-in private staff alpha testing
$has_cookie = isset($_COOKIE["'new_context']);
1f ($user->i1is_admin() && $has_cookie) {

$cfgl 'use_new_context_widget'] = true;
} else {

$cfgl'use_new_context_widget'] = false;

¥

Feature Flip

You can temporarily turn all these features off: IGNORE ALL

url param config name kind status change?

explore_search $cfg[disable feature explore search] feature flag ENABLED FOR THIS HOST
Turns on the new full width search page.

Unicorn Polo $cfg[enable unicorn_polo] feature flag ENABLED
Very secret; ask Dunstan.

Hot Tub Time Machine $cfglenable hot tub] feature flag DISABLED
Not as fun as it sounds.

http://code.flickr.com/blog/2009/12/02/flipping-out/

http://code.flickr.com/blog/2009/12/02/flipping-out/
http://code.flickr.com/blog/2009/12/02/flipping-out/

opt-1in public betas
1f ($user->has_pref('new_context’')) {
$cfgl 'use_new_context_widget'] = true;
} else {
$cfgl 'use_new_context_widget'] = false;

¥

opt-in public betas via groups
1f ($user->in_group(' new_context’')) {
$cfgl 'use_new_context_widget'] = true;
} else {
$cfgl 'use_new_context_widget'] = false;

¥

user tagging (ala dopplr)
1f ($user->has_tag(’'context_widget')) {
$cfgl 'use_new_context_widget'] = true;
} else {
$cfgl 'use_new_context_widget'] = false;

¥

Flexibility

dark launches can be ramped up

1f ($cfgl’'front_page_dark_launch’]) {
notice we're not keeping the data
get_some_really_complex_data()

}

Three types of feature flags:

1. Development on user facing features
2. Development on infrastructure
3. Kill-switches

killswitch

if ($cfgl'disable_login']) {
error('Sorry, login is unavailable');
exit;

}

Usually need multiple flags at once
during development and testing

for development

$cfgl 'disable_search_tests_all’'] = false;
$cfgl 'disable_search_ui_beta_test’'] = false;
$cfgl 'disable_search_darklaunch’'] = false;

for post launch
$cfgl 'disable_search’] = false;

Complexity

Separate operational controls
from development flags

Be disciplined about removing
unused feature flags

Always deploy trunk to every
server on every deploy
and manage versions through config

integrate with configuration management
if (in_array('beta’, $nodel[’'roles’]) {
..
} else {
..
J

or generate the application config file
from configuration management systenm..

“I can’t tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes they’re even kind of proud of this new, single-trunk
invention of theirs. As if it’s a virtue to work around the fact that your
version control tool is not doing what it’'s meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

minimal-gallery

resque_web_restart

api_styles

R email_reuse

remove-all-designers

use-newest-screenshot

api.docs

Distributed branching & merging is awesome

Use branches for early development
Branches merged into trunk

Use flags for rollout of almost-finished code

“I can’t tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes they’re even kind of proud of this new, single-trunk
invention of theirs. As if it’s a virtue to work around the fact that your
version control tool is not doing what it’s meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

“I can’t tell you how many Subversion users have told me the following
story: “We tried to branch our code, and that worked fine. But when it
came time to merge back, it was a complete nightmare and we had to
practically reapply every change by hand, and we swore never again
and we developed a new way of developing software using if
statements instead of branches.

“Sometimes they’re even kind of proud of this new, single-trunk
invention of theirs. As if it’s a virtue to work around the fact that your
version control tool is not doing what it’s meant to do.”

—Joel Spolsky,
http://www.joelonsoftware.com/items/2010/03/17.html

http://www.joelonsoftware.com/items/2010/03/17.html
http://www.joelonsoftware.com/items/2010/03/17.html

All existing revision control systems were built by
people who build installed software

Web apps are not like installed apps

What would a revision control system built for
supporting deployed web applications be like?

Thank you!

paul@paulhammond.org
http://www.paulhammond.org/2010/trunk

mailto:paul@paulhammond.org
mailto:paul@paulhammond.org
http://phmmnd.me/tru
http://phmmnd.me/tru

